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1 Introduction

Many definitions of ‘information’ in living tissue are in col-
loquial use, but in order to develop a framework for investi-
gation into the principles underlying information processing
by nervous systems we require a consistent definition of in-
formation as a quantity on an absolute scale, independent
of content. One of the most general definitions of informa-
tion (but not the only one) is ‘a measure of certainty at one
time or place of the state of something at another time or
place’. This is pretty general, and could in principle apply
to any states that we can characterize with just two things:
a variable, and a way of quantifying our certainty about that
variable’s value. The application of a measure of information
based on this definition requires some assumptions about the
system in question, most importantly that the variables at
one locus in the system represent variables at another locus.
Transmission of information is only meaningful if there is
something on the other end to receive it (with hopeful allu-
sions towards SETI, there may be a signal careening across
the universe to our electromagnetic receivers, but until we
recognize it as meaningful it is just energy like any other
stream – there is no information received when it dissipates
on heating an intervening planet, for example). Thus, in
the case of the brain, for our measure to have any chance of
showing real utility, we must cast neurons as traffickers in
information. An appeal to experimental neurobiology sup-
ports this assumption.

The behavioral output of organisms is quite clearly linked
to sensory input. Bright lights cause pupillary constriction;
rabbits can be conditioned to blink in response to a tone;
if you call my name, I will likely turn around. The litera-
ture abounds with more specific and quantifiable examples
of neurons functioning to coordinate responses to conditions
internal and external to organisms. A correspondence has
been demonstrated between neural activity and the states of
many circumstances, including density and energy of pho-
tons incident on the retina [15, 16], current and past states
of stretch in a muscle [11], impending motor activity [2], in-
ternal tissue damage [7], states of hunger or satiety [10], and
innumerable other such conditions that could be character-
ized as ‘state variables’. A huge amount of metabolic energy
is expended by most organisms on maintaining this neural
correspondence. Because of the prevalence of these corre-
lations, and the clear understanding of the functioning of

such mechanisms throughout the animal kingdom, the car-
rying of information by neurons is clearly not just an epiphe-
nomenon, a side effect of some physiological process that
runs independently of the correlation between action poten-
tial firing and external variable states. Instead, and since
these states have such impact on survival, it makes sense to
hypothesize that the nervous system is actively representing
them in proxy so that they can be evaluated, processed, and
used to generate outputs that increase the specificity (and
thus likelihood of success) of responses.

Thus, a key area of investigation is how these representa-
tions can be inferred from discrete events (e.g. action poten-
tial firing times) or continuous quantities (e.g. transmem-
brane potential) measured from single neurons or ensembles
of neurons. Because so little is known about this neural
code, it makes sense to begin a general search by finding
some limits on what the forms of the code could be. We want
to make as few assumptions as possible about any particular
input/output function for a neuron or group, since in exper-
imental conditions we often have very incomplete knowledge
about what the true range of inputs and outputs are. Quan-
titative measures of information that are based on statistics,
rather than knowledge of a particular encoding/decoding al-
gorithm, can be applied to certain quantities recorded from
neurons to establish such limits. The measures discussed
here, Fisher Information, Mutual Information, and Normal-
ized Transfer Entropy, have been applied with success in the
analysis of various experiments aimed at quantifying gen-
eral properties of neural systems that dictate how well they
transmit information from one place to another.

2 Fisher Information

Fisher information is a measure of the amount of infor-
mation carried by observations of a random variable Z
about a parameter Θ that determines the likelihood func-
tion L(Θ) = f(Z;Θ). In statistics, the concept of likeli-
hood allows estimation of unknown parameters of a distri-
bution given known outcomes drawn from the distribution
[19]. Fisher Information, I(Θ), is defined as the second mo-
ment (variance) of the score. In statistics, the “score” is the
derivative of the log of the likelihood function. So roughly,
the Fisher information I(Z) about Θ tells how sharply dis-
tributed the possible values of Θ are (given our observations
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of Z), and thus how certain we can be of its value. Formally,
following the derivation in Cover and Thomas Sec. 11.10 [6],
Fisher information for an individual sample is given by

I(Θ) = EΘ

�
∂

∂θ
lnf(Z,Θ)

�2
(1)

where E[•] represents the expected value. It has the use-
ful property that it is additive over independent identically
distributed samples {z1, ..., zn} ∈ Z. This means that if we
draw samples {z1, ..., zn}, the information obtained about
the parameter Θ taking all of them together, In(Θ) is equal
to n×I(Θ). This meaning of information makes sense, since
with each sample drawn, we learn something about the dis-
tribution, which improves our ability to predict the subse-
quent samples. We are thus gaining knowledge about the
generating process. If a receiver of a group of spike trains
(i.e. a downstream neuron) is trying to obtain knowledge
of the stimulus that provoked the spikes, finding out about
the current value of a parameter that governs the distribu-
tion of inter-spike intervals (ISIs) may be way of finding out
a the value of a parameter of the stimulus. Assume, for
example, that a primary sensory neuron fires spikes with
normally distributed ISIs with a constant variance whose
mean µ varies in response to stimulus intensity. Then the
Fisher information for each spike would give an indication of
how many spikes it would take for downstream neurons to
make an estimate of µ (and therefore the stimulus intensity)
with some chosen level of accuracy [26]. The application of
this method only applies when the distribution in question
can be parametrized. So if the form of the distribution of
the neural variable in question is completely unknown (or
subject to change), Fisher Information and other likelihood-
based methods (e.g. maximum likelihood) will not be ap-
propriate.

3 Self-Information and Entropy
Since we have defined information as ‘certainty’ about a vari-
able, it makes sense to measure it as a reduction in uncer-
tainty. In 1948, Claude Shannon developed a mathemati-
cal definition for uncertainty (in the context of communica-
tion of variable values), and, at the suggestion of John von
Neumann, termed it entropy. Entropy is defined as the ex-
pected value of the self-information a random variable con-
tains about itself [25].

Self-information can be understood this way: Given the
proclamation that a single outcome xi has occurred out of
a collection of possible outcomes represented by the random
variable X = {x1, ..., xn}, and the probability of this occur-
rence is p(xi), then the the self-information SI(xi) is

SI(xi) = log

�
1

p(xi)

�
= −log(p(xi)) (2)

This definition has a couple attractive properties that make
it useful as a basis for our information measure. One is that
it depends only on the probability of the occurrence of the

outcome p(xi), which makes intuitive sense – it is more ’sur-
prising’ to find out a rare event has occurred rather than a
common one, and if we have prior knowledge of their rela-
tive frequencies, we should need nothing else to quantify just
how surprising it is. And, like Fisher Information, this mea-
sure is additive over independent events. In other words, if
an event C is composed of two mutually independent events
A and B then the amount of information contained in the
knowledge that C occurred is equal to the sum of the in-
formation contained in the knowledge that A and B each
occurred:

SI(C) = −log(p(C)) = −log(p(A) · p(B))

= −log(p(A))− log(p(B))

= SI(A) + SI(B)

Intuitive justification for this property comes from the fact
that whether we have observed two outcomes separately, or
a single other outcome that tells us that both of those have
occurred, we have gained the same amount of information
about what transpired. The use of the log function trans-
forms the multiplication of independent probabilities into an
addition of information.

The entropy of a random variable X is just the expected
value of SI(X):

H(X) = E(SI(X))

where expected value is defined for a discrete random vari-
able R with probability mass function PR(r) as

E(R) =
�

i

riPR(ri)

Thus, for a random variable X with possible values
{x1, ..., xn} and probability mass function PX(x) we get a
final expression for entropy H(X):

H(X) =
�

i

PX(xi)logbPX(xi) (3)

We have basically just summed over the probabilities of all
possible outcomes (with each probability scaled by it’s own
logarithm). We can choose any base b we want for the loga-
rithm, but it is common to choose 2 giving entropy in units of
‘bits’, or e giving units of ‘nats’. Bits are the most commonly
used unit. This measure of entropy is extremely useful, since
for any condition (neural or otherwise) that we can cast as
a random variable and assign a probability mass function
(often the most difficult part), we immediately have access
to the uncertainty about a report of its state. In a neural
system, the entropy computed using spike trains depends on
how we define the random variable. It is common to take
X as the number of spikes observed during a single time bin
(whose distribution we estimate empirically based on obser-
vation). Entropy then gives us a measure of the number of
possible signals that could in theory be distinguished from
one another using this temporal resolution. This places a
theoretical upper bound on the number of possible states
the spike train could represent if it is using an ideal code.
The following measures build upon this knowledge to quan-
tify changes in uncertainty under particular conditions.
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4 Mutual Information
One useful question we can use this measure of uncertainty
to ask is the one suggested by our general definition of infor-
mation above (‘a measure of certainty at one time or place
of the state of something at another time or place’). To do
this, we take for one random variable X the quantity being
reported on and for another random variable Y the quantity
representing the report. For example, in a primary sensory
neuron, the intensity of the neuron’s preferred stimulus dur-
ing a given interval could be represented by X and the num-
ber of action potentials fired during this interval could be Y.
These are arbitrary selections; any physical quantity could
be used in principle, but, as mentioned above, in experi-
ments the probability distribution (mass functions) for these
variables are often prohibitively difficult to control, measure,
or even estimate. Putting aside these concerns for now and
assuming we know the distributions, we can define mutual
information as the amount of information shared between
two variables. In other words it is the amount by which our
uncertainty about one variable is reduced by knowing the
value of the other. Thus, mutual information is given by

I(X;Y) = H(X)−H(X|Y) (4)

which can be expressed more directly by its equivalent in
terms of probability mass functions:

I(X;Y) =
�

y∈Y

�

x∈X

PXY(x, y)log2

�
PXY(x, y)

PX(x)PY(y)

�
(5)

Note that this equation implies that the measure is com-
pletely symmetrical: I(X;Y) = I(Y;X). Again this is
intuitive, since mutual information is a measure of shared
information, which makes no statement about causality.

4.1 Application to Neural Systems
Knowing the entropy of spiking pattern observed in a neuron
places a limit on the maximum amount of information that
the neuron could be transmitting; the entropy represents
the number of bits required to specify all possible responses
under all stimulus conditions. If we call the response R and
the stimulus S, then the conditional entropy H(R|S) can
be thought of as ‘neuronal noise’ - the amount of uncer-
tainty remaining in the neural response when the stimulus
is known. Thus, comparison of H(R|S) to H(R) gives a
measure of how much uncertainty about the neuron’s activ-
ity is reduced upon presentation of the stimulus. This is a
good measure of the average efficiency of neural encoding.
Measurement of neural response R in experiments is highly
dependent on the stimuli applied, since this directly affects
which responses occur. In order to fully characterize the
distribution of possible responses, stimuli with maximum
entropy can be applied, in order to evoke as many differ-
ent responses as possible and give the closest estimate of
true response entropy. Calculation of the opposite quantity
H(S|R) is meaningful as well. It represents ‘stimulus equiv-
ocation’, or the amount of uncertainty remaining about the

value of the stimulus when the neural response is known. If
H(S|R) is comparably large with H(S), then the response is
doing a poor job of discriminating any given stimulus from
the other possible stimuli. By its symmetry, I(R;S) mea-
sures both neural noise and stimulus equivocation, giving a
good picture of how well responses discriminate among all
possible stimuli [1].

Another useful way to analyze neural activity is to model
noisy neural processes in response to a noisy input as a
‘Gaussian channel’ [9]. Imagine a neuron responds to some
external signal s with a response y. If we hypothesize that
the neuron’s response is proportional to the signal but with
some added noise η referred to the input, we can model the
process as

y = g(s+ η)

where g is a gain factor, and the noise is drawn from a
Gaussian distribution ( η ∈ N ∼ N(µ,σ) ). This means
that the output is completely determined by the signal and
the noise. Also note that we make no assumption about the
distribution of the signal.

In the case of a Gaussian channel, the upper bound on mu-
tual information can be calculated directly from the signal-
to-noise ratio (SNR). This very useful property is the result
of a long derivation that can be found in section 3.1.3 of
[Spikes], and relies on the fact that it can be proven that a
Gaussian distribution has the greatest entropy of any distri-
bution. It states that

I(S;Y) ≤ 1

2
log2[1 + SNR] (6)

The signal-to-noise ratio for a Gaussian channel is defined as
SNR = �s2�

�η2� , where �•� denotes taking a mean. This comes
from the definition in signal theory of SNR as signal power
divided by noise power. The inequality above becomes an
equality (which is the maximum information) if the signal
is Gaussian. From here we can also derive an expression for
the rate of information transmission in terms of the power
spectra of the signal and noise, S(ω) and N(ω):

R =

ˆ ∞

0
log2

�
1 +

S(ω)

N(ω)

�
dω (7)

which has units of bits per second.
One useful question to ask is ‘What is the maximum

amount of information a neuron can transmit, in the pres-
ence of noise?’. The expression above tells us that we can
find out if we are able to measure the signal-to-noise ra-
tio for the neuron’s output. de Ruyter van Steveninck
and Laughlin [22]applied this method to the analysis of the
transmission of information through photoreceptor chemical
synapses onto large monopolar cells in the blowfly. This is
a graded synapse, meaning the post-synaptic depolarization
due to neurotransmitter release varies continuously (in ana-
log fashion). They determined the noise in the synapse by
repeatedly presenting the same stimulus (a sequence of light
flashes resulting in a known contrast profile) and record-
ing membrane voltage from the photoreceptor and from the
post-synaptic (monopolar) cell. The mean of the voltage
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response �v(t)� was taken as the signal power, while the av-
erage of the power spectra of the demeaned responses was
taken as the noise power. Performing the above calcula-
tion (7) yielded a value of 1650 bits per second for the rate
of transmission across this ‘analog’ synapse, which is five
times greater than the rates estimated for spiking neurons.
They also were able to estimate the information rate at each
synaptic active zone to be approximately 50 bits per second,
assuming that each zone operates independently of the oth-
ers. This is a significantly higher rate of transmission than
that estimated for synapses of spiking neurons (in the neigh-
borhood of 50-100 bits per second for the whole synapse,
which still translates to > 1 bit per spike in many cases).

5 Transfer Entropy
Transfer entropy was devised to provide a measure of infor-
mation that differentiates between information that is actu-
ally exchanged and information that is shared due to a com-
mon history or common inputs [24]. By using Shannon en-
tropy calculations on variables that are conditioned on their
appropriate transition probabilities, transfer entropy gives a
measure of only the information in one responding variable
that is due to the value of another driving variable. Thus,
it is an asymmetrical measure: TEX→Y �= TEY→X. This
is highly useful in complex neural systems, where causality
cannot often be determined directly or assumed. Transfer
entropy can be applied to a system that can be modeled by
a Markov process of arbitrary order k. This means that the
probability of finding a given state of the system at any time
n is independent of the states of the system at time n−k (or
further back in the past). The system must also be station-
ary, meaning that the statistical distributions of the random
variables involved do not change over time. These are very
rough approximations to the nervous system, since we know
that biological processes may be influenced by events oc-
curring further back in the past than we can account for,
and the probabilities of cells firing may change over time, in
response to neuromodulatory effects, for example. Nonethe-
less, if we take care to minimize such effects, modeling spike
trains as stationary Markov processes is a useful approxi-
mation. According to this model, the formulation of trans-
fer entropy for two time series of samples {x1, ..., xn} and
{y1, ..., yn} drawn from probability mass functions X and
Y, respectively, is

TEX→Y =
n−1�

i=1

P (yi+1, y
(k)
i , x

(l)
i )log

P (yi+1 | y(k)i , x
(l)
i )

P (yi+1 | y(k)i )
(8)

where r(m)
i = {ri, ..., ri−m+1}. This means that the selection

of k and l in the formula allows one to choose how much
of each variable’s past to incorporate into the calculation
independently from the other. The probability conditional
on the past in the denominator, P (yi+1 | y(k)i ), means that
any predictive value about the value of Y that comes from
its own past (which encompasses common inputs to both)
is factored out. All that remains is information transmitted

from X to Y, though this may include any intermediary
processes.

5.1 Numerical implementation for spike
data

For finite discrete time signals (e.g. binned spike data, such
that the probability of occurrence of a spike in any given
bin is � 1), an estimation that converges on the transfer
entropy is

TEX→Y =
�

u

�

v

�

w

P (Y F = u, Y
P = v,X

P = w)

×log

�
P (Y F = u, Y

P = v,X
P = w)P (Y P = v)

P (Y P = v,XP = w)P (Y F = u, Y P = v)

�
(9)

for u, v ∈ {y1, y2, ..., ymax} and w ∈ {x1, x2, ..., xmax}
where ymax and xmax are the maximum observed values in
the signals Y and X, respectively [4]. Basically u, v, and w

range up to infinity, but the probabilities at values greater
that the maximum values observed are zero and are thus
unnecessary to compute. The variables Y

F , Y
P , and X

P

represent the states of the random variables at times in the
future and past. Thus, if Y represents a spike train, that at
any given time t, Y P is the number of spikes that occurred
in train Y during the past time interval [t− τpast, t] and Y

F

is the number of spikes that occur in the upcoming interval
[t, t+τfuture]. Likewise for XP . Note that we can choose our
past and future intervals independently, allowing us to set
how much ’memory’ and ’foresight’ the calculation employs.
By choosing the appropriate τ values information transfer
on arbitrarily large or small time scales can be investigated,
as long as the statistics can be assumed to be stationary on
the chosen scale.

5.1.1 Normalization

The transfer entropy measure above has a tendency to drift
upwards as a function of the window size [τfuture, τpast] used
to calculate it in practice. As such, it is necessary to remove
this bias from it by recomputing the measure with a shuf-
fled X in order to disconnect X and Y without changing
the inter-spike distribution of either [4]. To maintain the
interpretation as information in Y not explained by its own
past but explained by the past of X, the result should be
normalized by the conditional entropy in Y of its future on
its past: H(Y F |Y P ). Thus the normalized transfer entropy
is:

NTEX→Y =
TEX→Y − TE

shuffled
X→Y

H(Y F |Y P )
(10)

This defines a computational procedure that can be imple-
mented on the computer to determine the information trans-
fer in one direction or the other between any given pair of
spike trains. Note NTE will, by definition, fall within the
interval [0, 1], allowing comparisons between multiple pairs.
It is important to realize, however that the distribution of
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NTE values is difficult to estimate, meaning that one should
not use means of NTEs (or z-scores) for comparisons. In-
stead non-parametric methods could be employed.

5.1.2 Application to model spike trains

To test the NTE measure, two series of spike arrival times
Signal 1 and Signal 2’ were generated using Poisson arrival
times as a model for the firing statistics. These times are
initially uncorrelated. Next, a set fraction of spike times in
Signal 2’ were randomly selected and removed. They were
then replaced with the same fraction of instances of spike
times taken from Signal 1 but shifted forward in time (all
by the same fixed amount). The result is Signal 2. This
deliberately introduces a degree of causality of Signal 1
upon Signal 2. The NTE algorithm was applied to calculate
NTESignal 1→Signal 2. This whole procedure was repeated
for series of fractions of spikes replaced (i.e. introducing
more and more causality) and the results are shown here:

Figure 1: Testing NTE on model spike trains. The in-
set is a cartoon showing the process of generating the model
data (see text).

Notice that NTE increases monotonically as the fraction
of ‘directly influenced’ spikes increases, up to its maximum
value when the fraction replaced is 50%. The particular form
of this curve is specific to this model and does not apply
to all information sources, but the monotonic increase with
increasing causality is inherent, as is the scale. This example
simply serves to validate our intuition about the behavior of
the measure on discrete time series data.

6 Information in Ensembles
of Neurons

Decoding neural networks amounts to identifying channels
along which groups of neurons communicate, and figuring
out what information is being transmitted via these chan-
nels. If our hypothesis is that the channels for communica-

tion are in the form of spike times, we may wish to record a
large group of these simultaneously; from an array of elec-
trodes placed in the cortex, for example. Faced with a large
ensemble of neural spike trains recorded from such areas in
the brain where inputs and outputs are not well defined, it
becomes extremely useful to be able to guess the direction of
information flow based purely on observation of spike times.
Pairwise comparison of spike trains against each other can
give a map of information transfer, showing which neurons’
spike trains are most influential on any given cell, and which
cells in the group its spikes most influence.

6.1 Application to experimental data

Calculations of NTE were applied to simultaneous spike
trains recorded extracellularly from the thalamus and cor-
tex of awake behaving macaques. The time resolution of
the sampling was 1 ms. Spikes were sorted offline using
principle component analysis. The NTE measure was ap-
plied to every pairwise combination of spike trains in order
to generate an information transfer matrix that shows the
direction of information flow, taking each channel as a po-
tential source or receiver. For these calculations, parameters
τpast = τfuture = 10ms were used.

Figure 2: Comparing NTE with cross-correlation on
spike data from thalamus and cortex of a monkey.
On the left side, the sources are arranged on the ordinate
and the receivers on the abscissa. The color value for each
pair represents NTE from the source to the receiver, as a
percentage of the maximum NTE observed. The first two
channels in each are thalamic, while the rest are cortical.
On the right the cross correlation matrix (R values) for the
same units is shown for comparison.

Notice that channels that show higher correlation also
have a tendency to show an increase in transfer entropy in
one direction or the other. The cross correlation gives us
no information about which direction, however – its graph
is perfectly symmetrical. NTE, on the other hand shows a
number of channel pairs where information is transmitted
preferentially or exclusively in one direction. Some sources
show information transfer to a large number of receivers
(they appear as bright horizontal lines), and some receivers
show information transfer from a large number of sources

5



(bright vertical lines). The ’memory’ parameters τpast and
τfuture were chosen arbitrarily for this calculation. It would
be interesting to see how the information transmission pat-
terns change as larger spans (moments) in the past and fu-
ture are included in the calculation. Maybe some cells will
be sensitive to many others for a very brief period in the
past, but only sensitive to one or a few over longer periods.
It would also be interesting to look at these maps under dif-
ferent experimental conditions. Maybe some cell pairs will
show information transfer in one direction in under some
circumstances, and in the opposite direction under others.
Finally, it should be clear that this measure does not make
any assumptions about potential intermediate cells or other
processes, as long as the distributions from which the mea-
sured inter-spike intervals are drawn are stationary.

7 Conclusion
Research into the nature of the neural code focuses on three
main questions [1]: What is being encoded? How is it being
encoded? With what precision is it being encoded? The first
two questions can only be answered by insightful experimen-
tal design and probing the activity of neurons directly using
relevant stimuli. The third question, however, is amenable
to analysis with the information theoretical techniques de-
veloped above, and has important implications for the design
of experiments designed to answer the other two. Compar-
ing the behavioral responses to a stimulus to the responses of
a theoretical ‘ideal’ observer based on a model of the neural
processes observed gives a useful measuring stick for whether
the neural activity measured and modeled is really the basis
for the behavior, or whether other important processes are
being missed. Thus, if an investigator has developed a model
for how processing of a sensory input works, a key compo-
nent of its validation should be an information theory based
investigation of the precision with which it handles inputs
on the relevant time scales. If the results show an upper
bound on information transfer that does not permit enough
data to reach stages in the model where it is required, the
model must be revised.

Fisher information is well-suited to problems where the
general form of the distribution of inputs is known, but the
parameters that dictate the specific activity are not. In sen-
sory systems, such a parameter (the mean over a certain
period of an input with known variance) may be exactly
the piece of information required by downstream processing
and perceptual systems. Thus, it makes sense to estimate
the information transmitted this way when we have a good
idea about what the information input is, and what form its
probability distribution takes. Relaxing the requirement for
knowledge of the form of the distribution brings us to en-
tropy based measures like mutual information. We see that
mutual information is well-suited to investigating the prop-
erties of communication channels and methods, as in the
establishment of limits on the amount of information trans-
mitted though a given system with known noise. Due to its
symmetrical nature, however, mutual information gives no

indication of directionality or causality. Causality could be
suggested (but not proven) by significant mutual informa-
tion between one event and another that preceded it (since
it is unlikely that any event is affected by the future, bar-
ring quantum mechanical effects). Still, it is highly useful to
employ an inherently asymmetrical measure like transfer en-
tropy in situations where we are asking about which neurons
drive others and under what conditions (particularly in large
networks). Transfer entropy, like mutual information, makes
no assumptions about the form of the underlying probabil-
ity distributions that generate observed activity other than
that they are stationary (i.e. whatever the distributions are,
they do not change over time).

These tools give us useful methods for examining the prop-
erties of candidate neural codes, and the representation of
variables using them. However, even the constituents of such
encoded representations are not yet unquestionably estab-
lished. For any given variable to be represented, we must
ask: are the spike times the most important variable? Aver-
age numbers of spikes occurring within certain spatiotempo-
ral windows? Local field potentials? Spike times relative to
the period of field potential oscillations? Intracellular cal-
cium concentrations in certain microdomains? Information
theory will help eliminate (and potentially validate) choices
for the appropriate encoders, out of the many possible vari-
ables to consider.

All of the measures here are based on characterizing prob-
ability distributions for inputs and outputs, which is noto-
riously difficult in experiments on complex neural systems.
The statistics of such systems are obstinately non-stationary
(one cell may exhibit different firing modes, bursting vs.
tonic, for example, in response to the effects of certain neu-
romodulators, and these modes may have markedly different
statistics for inter-spike intervals). Thus, experiments must
be precisely designed to ensure that analysis is done over
intervals wherein stationarity can be roughly assumed.

Finally, we must be aware that none of the measures dis-
cussed here make any claims about the content of any given
spike interval or other individual transmission. They are all
properties of the communication process on the whole, deter-
mined statistically. The interpretation of their meaning and
the validity of their application to problems in neuroscience
is highly dependent on the appropriate selection of inputs,
outputs, and parameters of the assumed distributions, if any.
However, if care is taken, they can yield important conclu-
sions about the nature of information transmission and rep-
resentation in neural systems [5, 21, 18, 12, 13, 23].
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