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Abstract—Modern systems neuroscience benefits from the abil-
ity to record from and digitize a large amount of functional data
from hundreds or even thousands of neurons. Understanding,
transmitting, storing, and parsing information of such volume
and complexity calls for methods of dimensionality reduction.
One observation about neuronal activity in mammalian brains is
that populations are sparsely active; that is, only a small subset
of the whole ensemble is coactive at any moment. This property
may be exploited to summarize information content succinctly.
This paper tests the hypothesis that information contained in
ensemble activity recorded from the primate motor cortex about
limb movements is preserved when the activity is projected onto a
sparse basis. Spiking rate data from neurons in the motor cortex
of an awake behaving macaque monkey was compressed using
a sparse autoencoder network, and classifications of movement
directions were made in the compressed space. Classifier per-
formance is shown to be similar when using either compressed
(sparsened) or uncompressed neural activity, demonstrating the
potential use of the sparse autoencoder as an unsupervised
compression algorithm for low power/low bandwidth wireless
transmission of neural ensemble data.

I. INTRODUCTION

Sparse coding has been proposed as a method by which
a relatively small number of concurrently active processing
elements in the brain can efficiently encode large amounts
of information. Theoretical studies of associative memory
structures indicate that sparsity in activations minimizes in-
terference between encoded patterns [1] [2] and allows for
increased specificity in representations of information that
has structure known a priori [3] [4]. Calculations of energy
constraints imposed by the relatively high cost of neural firing
have led to the estimate that only 3% of cortical neurons
are actively spiking at any given time [5]. In recordings of
neural ensembles, these considerations all motivate the use
of decoding algorithms that employ similar criteria, favoring
schemes that minimize assumed concurrent activity among
disparate neuronal inputs. Here we present results from appli-
cation of an unsupervised sparse autoencoder (SA) algorithm
that summarizes ensemble activity in just a few bases that
are constrained to be minimally coactive. By training the
autoencoder, a summary of neural activity is generated that
identifies groups of neurons that tend to become active at
different times. The question we aim to answer in this paper
is whether such a separation (and dimensionality reduction)

preserves information about limb movement known to be
contained in the neuronal firing when each neuron is con-
sidered independently. If so, the sparse autoencoder may find
use as a dimensionality reducing compression mechanism for
encoding activity patterns recorded from large populations of
neurons. Examination of activity in such bases constrained to
be sparsely active is also illuminating of brain function since
downstream brain regions may decode activity in a sparse
manner.

II. METHODS

A. Behavioral Task and Neural Recordings

The data for this study was collected from an awake behav-
ing bonnet macaque monkey during performance of a manual
center-out reaching task. The monkey controlled a cursor on a
computer monitor by planar movements of its right arm inside
a robotic exoskeleton (Kinarm, BKIN Technologies, Kingston
ON). The monkey was required to hold the cursor within a
fixation target until appearance of a reach target located at
one of eight radially arranged positions, at which time it was
required to move to the reach target in order to receive a
juice reward. The movements were required to be completed
within 4s or the trial was aborted. Primary motor cortex
activity during this type of movement is known to be predictive
of movement direction [6] [7]. Movement trajectories were
recorded by the exoskeleton.

Recordings of neural activity were made using a surgically
implanted microelectrode array (Blackrock Microsystems, Salt
Lake City UT) in the primary motor cortex (M1) ipsilateral
to the arms used to perform the task [8]. The array was
a 10x10 platinum electrode grid with 450µm interelectrode
distance at tip and 1.5 mm shank length. During recording
sessions, amplification and preprocessing were performed with
a multi-acquisition processing system (Plexon, Inc., Dallas
TX). Signals from all array channels were amplified, band pass
filtered (170 Hz to 8 KHz), sampled at 40 KHz, thresholded,
and single units were sorted based on their waveforms using
principal-component clustering. Spike times thus identified
were saved for subsequent analysis.
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Fig. 1. Sparse autoencoder network architecture. The input for a time bin
t is a vector x(t) ∈ RN+1, where N is the number of neurons, and x0 = 1.
The first set of weights W

(1)
j,i specifies the connection strength from inputs

i ∈ 0...N to hidden units j ∈ 1...H , where H is the prescribed number
of hidden units in the network. The sigmoid non-linearity results in hidden
unit activations S ∈ RH+1. These, which include another bias term s0 = 1,
constitute the inputs to the output layer, scaled by a second set of weights
W

(2)
j,i from hidden units i ∈ 0...H to output units j ∈ 1...N . The output

layer activations are computed by application of the sigmoid again, and are
thus in the range (0, 1). During training, the error signal is a function of the
difference between input x(t) and output h(x(t)), a rule which requires no
supervised teaching signal. During subsequent classification, the activations
of the hidden layer units are the independent variables of interest.

B. Sparse Autoencoder

For N dimensional input, with desired compression to
H dimensions, the sparse autoencoder network [9] [10] is
formulated as a feedforward, fully connected, single-hidden-
layer perceptron network with an input layer of N + 1 units,
a hidden layer of H+1 units (both layers contain a bias term
set to 1), and an output layer of N units (Figure 1). Sigmoid
(1 + e−x)−1 nonlinearities are used as squashing functions.
The input vectors x(t) ∈ RN+1 are the binned spike counts
from all neurons at a single time step (along with a bias
term x0 set to 1). During training, for all timesteps t, the
network output hW (x(t)) ∈ RN for the current weight matrix
W = {W (1)

j,i ,W
(2)
j,i } is compared against the input, with error

taken as the Euclidean distance between them. Thus the goal
of the network is to reproduce the input vector at the output
after passing it through a restricted hidden layer. To make
the network learn such an identity function, a cost function

J(W,x) = 1
2 ‖ hW (x) − x ‖2 is applied to each training

example. For all training data (u time steps) taken at once,
the overall cost function is expressed as

J(W ) =

[
1

u

u∑
t=1

(
1

2
‖ hW (x(t))− x(t) ‖2

)]

+
λ

2

2∑
l=1

nl∑
i=0

nl+1∑
j=1

(
W

(l)
j,i

)2 (1)

where the second term is a regularization penalty, weighted
by parameter λ, introduced to prevent overfitting. nl is the
number of units in layer l. In order to enforce the sparsity
criterion that the input layer units should be inactive most of
the time, a sparsity penalty on the hidden units is added to the
cost function. This penalty was computed as the Kullback-
Leibler divergence between a Bernoulli random variable with
mean ρ (the desired average activation of the hidden units
over training inputs) and another with mean ρ̂j (the observed
average activation of hidden unit j over training inputs). This
results in a total cost function

J(W )sparse = J(W ) + β

s2∑
j=1

KL(ρ ‖ ρ̂j). (2)

KL(ρ ‖ ρ̂j) = ρlog ρ
ρ̂j
+(1−ρ)log 1−ρ

1−ρ̂j and β is a parameter
controlling the contribution of the sparsity penalty to the total
cost (set to 3 in all subsequent analyses). The network is
trained using backpropagation slightly modified to include
the sparsity penalty in equation (2). Thus for each training
example a feedforward pass is made to compute the activation
of hidden units ρj which are used in the KL divergence term
in the cost function, and thus contribute to the gradient on the
input weights W (1)

j,i for the hidden layer.
The cost function for each dataset was minimized using the

L-BFGS algorithm [11], which is a hill-climbing method for
finding a stationary point of a function (where the gradient is
zero). The resulting values for the weight matrix for the hidden
layer W (1)

j,i provide the information necessary to project the
neural data onto the sparse basis.

Input Data: Spike times from all 274 analyzed neurons
were binned at 25ms resolution and smoothed with causal
200ms boxcar smoothing windows and for the entire recording
period. The spike rates for all neurons in bin t, normalized
to the range (0, 1) for the whole recording, form an input
vector x(t) ∈ RN , where N is the number of neurons. All
timesteps from the recording session were used as training
data for the sparse autoencoder network, forming a training
set {x(1), ...,x(tmax)}, where tmax is the last time bin in the
recording.

C. Classification

The class labels for movement analysis were y ∈ {1...8},
corresponding to each of the eight radial directions (equally
spaced) at which targets appeared. Neural data from windows
of length Lwindow = 900ms surrounding successful reaching



movements (−200ms to 700ms from movement onset; aver-
age total reach time observed was 790ms) was binned with
windows of length Lbin = 25ms as above. This resulted in a
collection of Lwindow/Lbin = 36 vectors {x(t)} ∈ RN , each
representing the neural activity for one time step. These were
projected onto the sparse basis by passing them through the
first layer of the autoencoder network:

st = (1 + ea)−1 ∈ RH , a =W
(1)
j,i x

(t) + b (3)

The collection of the 36 sparsened vectors for all time bins
in one movement window S(m) = {st}, t ∈ {1...36}, along
with the associated class label y(m) form a single training
example for a multinomial logistic regression classifier. Thus
the classifier uses examples of the form

(
S(m), y(m)

)
,m ∈

{1....M}, where M is the number of successful movements
made during a recording session.

The classifier used was softmax multinomial logistic regres-
sion using nominal response variables with L2-regularization
[12]; the regularization parameter was set to 0.001 (determined
by an independent set of cross-validation tests).

D. Validation

We used data from 137 successful reaching movements
in a cross validation scheme to ensure that the classifier
was not overfitting to the training data. During each round
of cross validation, 20% of the reaching movements were
set aside as “test” data, and the remaining 80% were used
to train the logistic regression model. This separation does
not apply to the sparse autoencoder algorithm, which was
trained on all neural data recorded throughout the experiment.
Classification performance measures reported in this paper
refer to misclassification rates for test data only, to which
the trained classifier was naive (for both the sparsened and
unsparsened case).

III. RESULTS

A. Sparse Autoencoder Performance

The quality of the projection of the neural data onto the
reduced-dimension sparse basis is evaluated based on the
ability of the network to reproduce the neural data at the
output. Fidelity of reconstruction at the output ensures that all
ensemble information has been preserved in the compression.
We computed the mean across all time steps of the L2-norm
difference between the sparse autoencoder input and output.
The mean output error for sparse autoencoder networks with
varying numbers of hidden layer units is shown in Fig. 2.

The low error in reconstruction (<10% for all numbers of
hidden units) suggests that the neural activity being encoded
is well summarized by activations of only a few bases that are
constrained to be rarely coactive. These results are for net-
works trained with sparsity parameter ρ = 0.1; changing this
parameter (i.e. tightening or relaxing the sparsity constraint)
affected the reconstruction error slightly (±0.02 mean error
over all values from 0.001 to 0.5) but had no effect on the
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Fig. 2. Sparse autoencoder reconstruction performance During training of
the sparse autoencoder network, a record of the L2-norm difference between
network output and training signal (|hW (x(t))− x(t)|) was kept. The mean
value of this error statistic over all over all time samples in the recording
{x(1), ...,x(u)} is plotted for various numbers of hidden layer units.

movement direction classification error (see section III-B; data
not shown) and so was not pursued further.

Inspection of the average activation of the hidden units
(bases) in peri-movement windows (S(m)) shows that activity
for a given unit differs across movement directions (Fig. 3). It
is also evident that different bases capture features at different
phases of the movement. Activity in basis 8, for example, is
high for all movement directions during the pre-movement and
late-movement phases, but varies conspicuously during the pe-
riod immediately following movement onset. Such differences
provide good features for classification.

Movement
Direction

-200 700ms
0

1

Basis (Hidden Unit) Number

1 2 3 4 5 6 7 8 9 10

Fig. 3. Averaged activities in sparse bases for eight movement directions.
For each movement direction, the average output of each of the 10 hidden units
(shown in columns) across all examples of that movement were computed for
36 time bins surrounding the movement, from 200ms before to 700ms after
onset. The direction for each row is indicated by the arrow in the left column.
Bar heights are scaled to the maximum value for all bases for any direction;
range (0,1).



B. Classifier Performance

Does the activity in such a reduced basis still contain in-
formation about movement direction, or has it been destroyed
by the dimensionality reduction and sparsening criteria? To
address this, the neural activity projected onto various set
numbers of sparse bases were used as input for classification
of movement directions. Performance on this problem was
quantified in terms of fraction of reach directions in the
test data set misclassified on each round of cross valida-
tion. The results are shown in Fig. 4. As a baseline, the
multinomial logistic regression classification was performed
on identically preprocessed but unsparsened neural activity.
The mean error rate for the classification of sparsened data
was found to be similar to that for unsparsened data when
the the sparse autoencoder was equipped with a sufficient
number of hidden units (i.e. dimensions). For the data set
used, the minimum number of bases needed for commensurate
performance proved to be 10. It is notable, however, that even
with as few a two bases, the performance of the classifier
on test data remained well above chance level, which was
established by classification on a dataset where the labels
y(m) for all movements were shuffled randomly. This suggests
that even aggressive dimensionality reduction by the sparse
autoencoder preserved much of the information needed to infer
movement direction from neural activity.
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Fig. 4. Classifier performance on test data Multinomial logistic regression
was applied to the neural activity projected onto the sparse basis after SA
training (activity in H bases x 36 time steps for each example) for SA
networks with different numbers of hidden units (X axis). The mean fraction
of examples in the test sets of 20 rounds of cross validation that were
misclassified is indicated by the green dots. For comparison, training and
classification were performed on the same sparsened dataset but with the
labels shuffled. The test set misclassification rate is indicated by the red dots.
The blue line and band shows the mean±SD misclassification rate for the
multinomial logistic regression applied to unsparsened neural data.

Finally, it was noted that the mean percentage of recorded
neurons coactive within a bin throughout the recorded file was
12.6 ± 4.5%. Such a small proportion is consistent with the
idea that networks of coactive cells are sparsely connected.

IV. CONCLUSION

We emphasize that the results presented here do not conclu-
sively establish that a sparse code is employed in the motor
cortex (though they are consistent with this hypothesis), but
rather that a downstream decoder which is constrained to be
sparsely active is able to capture the same amount of informa-
tion about movement direction as the raw neural activity. The
fact that the sparse autoencoder preserves information about
movement direction does suggest that neurons downstream
from the motor cortex engaged in maintenance of internal
forward models of movements (in striatum or cerebellum,
for example) could successfully capture movement informa-
tion with a sparse code. The hidden unit activations may
be interpreted as summaries of activity of subassemblies of
neurons within the whole recorded population. Since relatively
few of these summaries are required to reconstruct the neural
activity, we can conclude that there is statistical regularity in
the identities of the subassemblies, which can be exploited by
downstream decoders.

Note that the sparse autoencoder is applied here to quasi-
static binned data. The dynamics of the neuronal firing at
fine time scales are not taken into account. An important
extension of this work would be to apply similar methods to a
dynamical system model in order to identify temporal patterns
in ensemble spiking that provide useful bases for efficient
coding of time-varying motor control signals.

There is a practical use for the dimensionality reduction
presented here as well. Despite the rich information about
neural coding that neuroscientific preparations uncover, trans-
lation into practical use in the clinical or home setting has
been slow partly due to the obtrusiveness of implants. Wireless
transmission of brain-derived information would further the
use of low-profile devices that could be implanted more safely
and permanently. This requires an economy of power and
bandwidth, both of which are facilitated by the sparse autoen-
coder, an unsupervised algorithm that could be implemented
on board a fully implantable microprocessor.
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