
Numerical Solutions to the Passive Cable Equation:
Using Finite Difference Approximations to Partial Derivatives

Marcello DiStasio
SUNY Downstate Medical Center & NYU-Poly

January 27, 2010

1 Second Order Difference Kernels

1.1 Finite Difference Approximation

Based on Taylor approximations, finite difference approximations to the derivatives of a function defined on a
uniform grid (xi) , xi = xo + h , h > 0 can be given using arbitrarily sized kernels. For second order kernels, we
obtain the following ’forward difference’ approximation to the first derivative:

f
�(x) � f(xi+1)− f(xi)

∆x
+O(∆x)

and a ’center difference’ approximation to the second derivative:

f
��(x) � f(xi−1)− 2f(xi) + f(xi+1)

∆x2
+O(∆x

2)

Note that these are not the only difference formulas that can be defined as computational molecules on the
mesh; others such as backward or centered difference or the Crank-Nicolson molecule have various computational
advantages related to ensuring stability while using differently spaced meshes.

1.2 Application to Cable Equation

The cable equation describes the passive spread of voltage in one dimension along a cable with an inner (’axial’)
conductor and outer (’membrane’) resistive covering. The cable equation in a second order parabolic PDE, similar
in form to the heat equation that describes the distribution of thermal energy along a uniform bar as a function of
time and distance from the origin. The voltage in a cable as a function of time t and distance along the cable x can
be given by

Cm
∂V

∂t
=

1

4Ri

∂2V

∂x2
−GmV −RmJ

where Cm is the membrane capacitance; Ri is the longitudinal (internal) resistance; Gm is the membrane con-
ductance (Gm = 1

Rm
, where Rm is the membrane resitance); and J is the injected current.

If we let vnj = V (xj , tn), and partition time in steps ∆t and space in steps ∆x, we can use the second order
difference approximations above to write the cable equation as

Cm

�
v
n+1
i − vni

∆t

�
=

d

4Ri

�
vni−1 − 2vni + vni+1

∆x2

�
−Gmv

n
i − J

n
j

1



Rearranging terms so that the current terms at any grid step (vnj ) can be expressed in terms of past values (vn−nm
j−jm

)
we obtain

v
n+1
i = v

n
i +

d∆t

4RiCm∆x2
(vni−1 − 2vni + v

n
i+1)−

∆tGm

Cm
v
n
i − J

n
i

Now we let K = d∆t
4RiCm∆x2 and we let B = −∆x24RiGm

d . Then we can write v
n+1
i as:

v
n+1
i = Kv

n
i−1 + (1− 2K −BK)vni +Kv

n
i+1

We can write this in vector form if we take

vn = (vni ) = t[... , vni−1 , v
n
i , vni+1 , ...] and

vn+1 = (vn+1
i ) = t[... , vn+1

i−1 , v
n+1
i , v

n+1
i+1 , ...] and

jn = (Jn
i ) = t[... , Jn

i−1 , J
n
i , Jn

i+1 , ...]

Then we have

vn+1 = Avn − jn

where A is defined as

A =





1 0 0 0 ... 0 0
K 1−K(2 +B) K 0

0 K 1−K(2 +B) K
...

...
0 0 K 1−K(2 +B) K 0

0 0 0 K
. . . 1−K(2 +B) K

0 0 0 0 . . . K 1





Thus, given a vector v0 specifying the intial condition, you can simply iterate forward in time, repeatedly applying
the matrix A to the output of each previous step. Note that the top and bottom rows are set to 1 (identity) to
preserve the boundary condition. In the simulations below, Dirichlet (fixed) boundary conditions are used, with
the voltage fixed are resting potential (analagous to a sealed, but not killed, axon ending). A simple MATLAB
function implementing this entire method is given in the file CabSecondOrder.m.

2 Fourth Order Difference Kernels

For fourth order kernels, following the conventions above we obtain the following finite difference approximations:

f
�(x) � −f(xi−3) + 6f(xi−2)− 18f(xi−1) + 10f(xi) + 3f(xi+1)

12∆x
+O(∆x

4)

2



f
��(x) � −f(xi−2) + 16f(xi−1)− 30f(xi) + 16f(xi+1)− f(xi+2)

12∆x2
+O(∆x

4)

Note that the fourth order kernels are not symmetrical about xi, which would lead to a linear decrease in the
error (but not change its order), but the asymmetrical kernel is used to simplify the programming. Here we let
K = d∆t

CmRi∆x2 and B = (−30− 30K − 4∆tGm
Cm

) to yield the following matrix:

A =





1 0 0 0 0 · · · 0
16K B −10K −K 0 · · ·

−K 16K B −10K −K
...

0 −K 16K B −10K
. . .

16K
. . . 0

... 16K B −10K −K

0 −K 16K B −10K
0 · · · · · · 0 0 0 1





Then we can calculate the voltage vectors at each time step (as defined above) by:

vn+1 = Avn + 54vn−1 − 18vn−2 + 3vn−3 − jn

A MATLAB function implementing this method can be found in the file CabFourthOrder.m.

3 Computational Issues

The requisite density of the mesh spacing is highly sensitive to the parameters K and B, particularly for the fourth
order difference method. In practice, the mesh size required to ensure a stable solution to the cable equation with
realistic biological parameters using the fourth order method is too fine to allow for simulation on a standard desktop
computer due to memory restrictions. Thus, to approximate higher order differences, more efficient computational
algorithms such as Crank-Nicolson or Runge-Kutta should be employed.

4 Results

4.1 Comparison with results from NEURON

The following figure shows the voltage trace at the current injection site computed using the parameters:

• Rm = 1× 103 Ω/cm

• Ri = 35.4Ω · cm

• Cm = 1× 10−6 F/cm2

• d = 1× 10−13cm (again, this is smaller than in reality)

• Tmax = .005 s

• L = 0.01 cm

• ∆t = 1× 10−5s

• ∆x = 2× 10−4cm

3



Figure 1: Voltage at the location of current input as a function of time as computed with the algorithm delineated
in this report

Running the simulation in the NEURON environment (see http://www.neuron.yale.edu/) with the same pa-
rameters yields the following voltage trace:

Figure 2: Voltage at the location of current input as a function of time as computed with the NEURON software

The similarity in shape (it is seen on further inspection that there are slight differences in amplitude) serves to
validate the general approach outline above. However, the simulation of realistic biological parameters (similar to
the default parameters given in NEURON) is computationally difficult for the reasons outlined above.

4.2 Visualizing current spread

The solution to the cable equation was computed using the second order difference method with the following
parameters:

4



• Rm = 2.5× 1011 Ω/cm

• Ri = 29.7Ω · cm

• Cm = 1× 10−6 F/cm2

• d = 1 × 10−14cm (this is smaller than in reality, but was used to allow a wider mesh space and thus allow
the use of less memory)

• Tmax = 1.5 s

• L = 0.001 cm

• ∆t = 6× 10−4s

• ∆x = 2× 10−6cm

A current injection of −0.01µA with a duration of 1 second was applied to the cable at a single location. The
resulting voltage is shown below (Fig. 3) as a function of space and time.

Figure 3: Spread of potential along the cable with a uniform current input at a single location

4.3 Response to s sinusoidal current input

Using the same parameters as section 4.2 the voltage response to the input of a sine wave current amplitude was
calculated. The results are shown in Fig. 4, which uses the same conventions as the figures above.

5



Figure 4: Voltage response in the 10µm length cable to a current input at a single location with a sinusoidally
varying amplitude

5 Discussion

The comparison of the numerical solution presented above with a model run in NEURON reveals that our method
yields very reasonable results when run with parameters that fulfill criteria for stability. The dynamics of the voltage
change in repose to current inputs match quite well. The figures also show a pattern of voltage spread that matches
expectation based on experiment. Nevertheless, because differential equations are inherently functions of both the
independent variables and the discrete step size in those variables (e.g. ∆x), the computation of the solution using
this method has some key limitations:

• Computational efficiency: Simulation of completely biologically realistic parameters required a mesh size too
small to achieve a guarantee (or even possibility) of a stable solution. This can be predicted by the value
of K in the second order case, which should be less than 1

2 to ensure stability (likewise for B in the fourth
order case – a condition that could not be met in useful simulations using the memory available on a desktop
computer).

• Stability (oscillations): The computation introduces error into the solution that is guaranteed to be less than
the O terms in the formula, but these errors may wax and wane periodically. Such behavior can be observed
in the color map plots in the spatial (x) direction, where ripples are seen in regions that should be smoothly
decreasing.

There are a number of other options for computing the difference approximations. One simple change that
would improve the stability of the solution without changing the computational load would be to replace the
forward difference approximation to the first derivative with a centered difference approximation, as in f �(x) �
f(xi+1)−f(xi−1)

2∆x + O(∆x2). In this case the error would only be proportional to the square of the time step (and
thus would be reduced, since ∆t < 1). Finally, as mentioned above, in many situations the use of more efficient
and more stable algorithms (Runge-Kutta, Crank-Nicolson), which are in packages already widely available, would
remedy the problems described here.

6 References

1. Christof Koch. Biophysics of Computation. Information Processing in Single Neurons. 1999. Oxford Univer-
sity Press.

2. http://reference.wolfram.com/mathematica/tutorial/NDSolvePDE.html#c:4

3. Gerald W. Recktenwald. Finite-Difference Approximations to the Heat Equation. http://web.cecs.pdx.edu/~gerry/class/ME448/codes/FDheat.pdf

4. Numerical Analysis of Partial Difference Equations. Hall and Porsching. 1990. Prentice Hall.

6



5. Numerical Solution of Partial Difference Equations: Finite Difference Methods 3rd ed. G.D. Smith. 1985.
Oxford University Press.

6. NEURON for empirically-based simulations of neurons and networks of neurons. http://www.neuron.yale.edu/neuron

7


