Creating Synthetic Glioma and Brain Tissue Histology

Marcello DiStasio ${ }^{1,2}$ and David Meredith ${ }^{1}$

Departments of (1) Pathology, Brigham and Women's Hospital, (2) Pathology, Boston Children's Hospital, and (3) Oncologic Pathology, Dana Farber Cancer Institute, Boston MA 02115

Introduction	Results					
The promise of digital image analysis for use in neuropathology is subject to constraints of automation and robustness of feature identification. Many advanced machine-learning algorithms have been applied to digitized slide images for purposes of segmentation and feature extraction, but these all rely on the availability of a large volume of high-quality training data to achieve high accuracy. Surgical neuropathology involves a wide variety of histologic appearances, including multiple morphologic variants of common entities (e.g. glioblastoma), and many entities which are encountered at low frequency (e.g dysembryoplastic neuroepithelial tumor). Training any robust machine-learning based classifier on raw neuropathology histologic images will suffer from the classic problem of unbalanced training data, in which a few histologic patterns are highly represented, and other histologic patterns are poorly represented. This biases training, creating algorithms with high sensitivity for the common patterns, and low sensitivity for rare patterns.			$\begin{aligned} & 0 \\ & 200 \\ & 400 \\ & 600 \\ & 800 \end{aligned}$			

Methods

Training Data Source

 and discriminator of the e enerator
oligoderncroglioma training data oliogodenrogliom a training data
set. Both netwrats a anheve stability
after about 1500 training epochs set. Soth networks achieve stas
atter about 1500 traine
($\sim 2-3$ hours on 4 GPUS). epochs

Code for exporting tiles and training GANs, as well as Code for exporting tiles and training GANs, as well as
fully trained models are available at http://chelly.us/lab

Conclusions

- Using this method, we have created a set of models that generate synthetic image patches based on single slides of normal brain tissue, glioblastoma, oligodendroglioma (grade II), and other rarer brain tumor types.
Synthetic images recapitulate morphologic and architectural features of particular tumors: - Neuropil texture

Chromatin density and texture

- Cellular density
- Spatial relationships between cells / nuclei

Models are an anonymized, compressed representation of an individual tumor, or of a tumor type.

- These models can be easily deployed by machine learning researchers to enhance the training and testing of new algorithms for application to routine histologic images of neuropathologic entities.
References
I1 de Rob Pes P.

