Creating Synthetic Glioma and Brain Tissue Histology Marcello DiStasio^{1,2} and David Meredith^{1,3}

Departments of (1) Pathology, Brigham and Women's Hospital, (2) Pathology, Boston Children's Hospital, and (3) Oncologic Pathology, Dana Farber Cancer Institute, Boston MA 02115

Introduction

The promise of digital image analysis for use in neuropathology is subject to constraints

Methods

We present here a method for 'bootstrapping' both rare and common histologic features to arbitrarily high representation in a training data set by training a group of algorithms to generate novel, synthetic, realistic histologic images based on limited input (e.g. a single H&E stained slide). These algorithms, known as generative adversarial networks (GANs), once trained, can produce a vast number of novel images that share features with the training images. By training a GAN on a limited number (e.g. 1000) of image patches drawn from a single or few slide(s), a huge number of novel images can be generated (>1e419 64x64 pixel images; larger than the number of protons in the known universe).

Training Data Source	
Whole Slide Images:	Known histologic diagnoses:
»TCGA data portal »Slides scanned during clinical workflow	 Glioblastoma, IDH-wildtype, W.H.O. grade IV Oligodendroglioma, IDH-mutant and 1p/19q-codelete Dysembryoplastic Neuroepithelial Tumor, W.H.O. grade

- (64x64x3) compared with real images patches

Actual Generator Model Architecture

^[5] Bankhead, P. et al. QuPath: Open source software for digital pathology image analysis. Scientific Reports (2017). https://doi.org/10.1038/ s41598-017-17204-5